Approximation by Faber–Laurent rational functions in Lebesgue spaces with variable exponent
نویسندگان
چکیده
منابع مشابه
Interpolation in Variable Exponent Spaces
In this paper we study both real and complex interpolation in the recently introduced scales of variable exponent Besov and Triebel–Lizorkin spaces. We also take advantage of some interpolation results to study a trace property and some pseudodifferential operators acting in the variable index Besov scale.
متن کاملApproximation by Rational Functions
Making use of the Hardy-Littlewood maximal function, we give a new proof of the following theorem of Pekarski: If f' is in L log L on a finite interval, then f can be approximated in the uniform norm by rational functions of degree n to an error 0(1/n) on that interval. It is well known that approximation by rational functions of degree n can produce a dramatically smaller error than that for p...
متن کاملRiesz and Wolff potentials and elliptic equations in variable exponent weak Lebesgue spaces ∗
We prove optimal integrability results for solutions of the p(·)-Laplace equation in the scale of (weak) Lebesgue spaces. To obtain this, we show that variable exponent Riesz and Wolff potentials map L to variable exponent weak Lebesgue spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae
سال: 2016
ISSN: 0019-3577
DOI: 10.1016/j.indag.2016.06.001